The Hubble Tension

Sherry Suyu

Max Planck Institute for Astrophysics
Technical University of Munich
Academia Sinica Institute of Astronomy and Astrophysics

November 5, 2021
Brookhaven Forum 2021: Opening New Windows to the Universe

Expanding Universe

1920s Discovery

Lemaître & Hubble independently measured the expansion rate

$$v = H_0 \times d$$
Hubble Constant

*H*₀ sets age and size of Universe! [Hubble 1929]

Measurements in the last decades

Tension in H₀

Measurement from early universe: Cosmic Microwave Background

[Planck collaboration 2020]

 $69.6 \pm 0.8 \pm 1.7$

CCHP [Freedman et al. 2020]

Measurement from local universe: supernova distance ladder

SH0ES [Riess et al. 2021]

New physics beyond standard cosmological model ΛCDM?

 H_0 [km⁻¹s⁻¹Mpc⁻¹]

Distance Ladder

ladder to reach objects in Hubble flow ($v_{peculiar} << v_{Hubble} = H_0 d$)

1:Geometry→Cepheids

2: Cepheids→SN la

3:SN la \rightarrow z,H₀

[slide material courtesy of Adam Riess]

Distance Ladder

ladder to reach objects in Hubble flow ($v_{peculiar} << v_{Hubble} = H_0 d$)

[slide material courtesy of Adam Riess]

Distance Ladder

ladder to reach objects in Hubble flow ($v_{peculiar} << v_{Hubble} = H_0 d$)

1:Geometry→Cepheids

2: Cepheids→SN la

3:SN la \rightarrow z,H₀

[slide material courtesy of Adam Riess]

Cosmic Microwave Background

CMB Temperature fluctuations

[Planck Collaboration 2016]

- (1) Ratio of peak heights $\rightarrow \Omega_{\rm m}h^2$, $\Omega_{\rm b}h^2$ [h = H_0 / 100 km/s/Mpc]
- (2) Location of the first peak in **flat** Λ **CDM** $\rightarrow \Omega_{\rm m}h^{3.2}$
- Under flat ΛCDM assumption, (1) and (2) yield
 h = 0.674±0.005 [Planck collaboration 2020]
- Without flat ΛCDM assumption, h highly degenerate with other cosmological parameters (e.g., curvature, w, N_{eff})

Megamasers

Direct distance measurement without any calibration on distance ladder

- 1. Distance : $D = r / \Delta\theta$ (for D >> r)
- 2. Gravitational acceleration in a circular orbit:

$$a = V_0^2 / r$$
 $r = V_0^2 / a$

$$D = V_0^2 / a \Delta \theta$$

$$D = V_0^2 \sin i / a \Delta \theta$$

[slide material courtesy of Cheng-Yu Kuo]

Megamasers

 $D = V_0^2 \sin i / a \Delta \theta$

How to measure V_0 , $\Delta\theta$, a and i?

Standard Siren

Gravitational wave form → luminosity distance D Measure recessional velocity of EM counterpart v

 $H_0 = v / D$

[Image credit: M. Garlick]

GW170817: First measurement of H₀

[LIGO, VIRGO, 1M2H, DES, DLT40, LCO, VINROUGE, MASTER collaborations, 2017]

Type II supernovae

[slide material courtesy of Christian Vogl]

adH0cc

accurate determination of H₀ from core-collapse supernovae https://adh0cc.github.io/

VLT large programme: ~150 hours over three semesters MPA, ESO, TUM, GSI, QUB, LAM, Turku, WIS, EPFL

[slide material courtesy of Christian Vogl]

Image: ESO/Y. Beletsky

Strong gravitational lensing

[Credit: ESA/Hubble, NASA]

Cosmology with time delays

Cosmology with time delays

Cosmology with time delays

HE0435-1223

[Suyu et al. 2017]

Advantages:

Time delay:

$$t = \frac{1}{c} D_{\Delta t} \phi_{lens}$$

$$\uparrow \qquad \uparrow$$

$$Time-delay \qquad Obtain from \\ distance: 1 \qquad lens mass \\ D_{\Delta t} \propto \frac{1}{H_0} \qquad model$$

[Refsdal 1964]

For cosmography, need:

- (1) time delays
- (2) lens mass model
- (3) mass along line of sight
- simple geometry & well-tested physics
- one-step physical measurement of a cosmological distance

TDCOSMO H₀ measurements

Galaxies are described by power law/stars+NFW mass profile

Assuming SLACS lenses and TDCOSMO lenses share the same anisotropy and radial mass density property

Assuming SLACS lenses and TDCOSMO lenses share the same anisotropy property

TDCOSMO+SLACS_{IFU} (anisotropy constraints from 9 SLACS lenses)

TDCOSMO+SLACS_{SDSS+IFU} (anisotropy and profile constraints from SLACS)

Birrer et al. 2020 Millon et al. 2020 Shajib et al. 2020 Wong et al. 2020 Chen et al. 2019

Strongly lensed supernovae

SN Refsdal

[Kelly et al. 2015]

iPTF16geu

[Goobar et al. 2017; image credit: NASA/ESA]

SN Requiem

[Rodney et al. 2021]

HOLISMOKES

Highly Optimised Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals

PI: S. H. Suyu

Lensed supernovae provide great opportunities for

- 1) Measuring the expansion rate of our Universe
- 2) Constraining the progenitor of Type Ia supernova single degenerate double degenerate

White dwarf (WD) accreting from non-degenerate companion

WDs merging

or

Recent H₀ measurements

[Di Valentino et al. 2021]

How to resolve the Hubble tension?

Cosmic Microwave Background (CMB)

Last scattering surface

$$r_{\rm s}(z_*)$$
 = sound horizon at last scattering surface

$$D_{\rm A}(z_*)$$
 = angular diameter distance

$$\theta_{\rm s}(z_*)$$
 = angular scale of the sound horizon

→ measured with 0.03% precision by Planck Collaboration (2020)

22

How to resolve the Hubble tension?

r_s: pre-recombination physics

→ depends on physical densities (baryons, radiation, CDM, neutrinos)

D_A: post-recombination physics

→ information on H₀

 $\theta_{\rm S}(z_*)$ = angular scale of the sound horizon $r_{\rm S}(z_*)$ = sound horizon at last scattering surface $D_{\rm A}(z_*)$ = angular diameter distance

How to resolve the Hubble tension?

$$heta_{
m s} = rac{r_{
m s}(z_*)}{D_{
m A}(z_*)} = rac{\int_{z_*}^{\infty} c_s(z) dz / H(z)}{\int_{0}^{z_*} c \, dz / H(z)}$$

where in flat LCDM cosmological model:

$$H(z) = 100 h(z) \text{ km s}^{-1} \text{ Mpc}^{-1}$$

$$h(z) = \sqrt{\Omega_{\rm r} h^2 (1+z)^4 + \Omega_{\rm m} h^2 (1+z)^3 + \Omega_{\Lambda} h^2}$$

$$h = \frac{H_0}{100 \text{ km s}^{-1} \text{ Mpc}^{-1}}$$

Solution to resolve Hubble tension given fixed θ_s : change r_s(z_{*}) or h through changes to H(z), c_s, or z_{*}

[parts of slide content courtesy of Elisa Ferreira]

Ways to change H(z)

- early dark energy
- additional relativistic species (extra "dark" radiation at recombination)
 - sterile neutrinos
 - thermal axions
 - decaying dark matter
 - self-interacting dark matter
- spatial curvature of the Universe (non-flat)
- late dark energy

•

[e.g., Di Valentino et al. 2021 for review]

Early vs. late time solutions

$$heta_{
m s} = rac{r_{
m s}(z_*)}{D_{
m A}(z_*)} = rac{\int_{z_*}^{\infty} c_s(z) dz / H(z)}{\int_{0}^{z_*} c \, dz / H(z)}$$

Early Universe Solutions

- Change only early time physics, late time almost unaffected
- fixed $\theta_s(z_*)$
 - \rightarrow decrease $r_s(z_*)$
 - \rightarrow decrease $D_A(z_*)$
 - → increase H₀

[e.g., Poulin+2019; Agrawal+2019; Smith+2019; Knox & Melia 2019; Di Valentino+2021]

Late Universe Solutions

- Change only late time physics, early universe unaffected
- Little room for change in the physics
- Currently the solutions do not resolve the tension, only alleviates!

[e.g.,Knox & Melia 2019; Arendse+2020; Di Valentino+2021]

Early Dark Energy

Idea: add an extra component (to increase H(z)) that starts acting around matter-radiation equality, behaves as dark energy and dilutes faster than matter

27

H₀ with Early Dark Energy

[Hill et al. 2021]

ACT + large-scale Planck TT + Planck CMB lensing + BAO data

- → the existence of EDE at > 99.7% CL.
- → $f_{EDE} = 0.091 + 0.020 / -0.036$, with $H_0 = 70.9 + 1.0 / -2.0$ km/s/Mpc Debate ongoing whether early dark energy exists

Summary

- Intriguing tension in the measurements of the H_0 (>4 σ) from Planck and from the SH0E program
- Independent measurements of H₀ are crucial to validate or refute the tension
- Several methods with the potential of reaching 1% precision in H₀ in the coming years
- New physics to resolve the H₀ tension are more likely to be at the early Universe, including early dark energy